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Proposition 0.1 (Exercise 111.5.2). Let 21, 29, 23,24 € C. If ¢ is a linear-fractional trans-
formation, then

(21, 22; 23, 24) = (9(21), (22); P(23), P(24))
Proof. There exists a unique fractional linear transformation v such that
P(z1) =00 P(z2) =0  P(z) =1

and then by definition (21, 29; 23, 24) = ¥(24). Similarly, there exists a unqgiue fractional linear
transformation 7 such that

nog(z1) =00 nod(z)=0 mnog(zs)=1

and by definition (¢(z1), @(22); #(23), ¢(24)) = no@(z4). The composition o ¢ is a fractional
linear transformation that agrees with ¢ on three points, so by uniqueness, 1) = no ¢. Thus
¥(2z4) = no P(z4), so the cross ratios are equal. ]

Definition 0.2. Two linear-fractional transformations ¢1, o are conjugate if there is a
linear-fractional transformation 1 such that ¢y = Y110~ ".

Proposition 0.3 (Exercise I11.6.2). All translations, except the identity transformation, are
mutually conjugate.

Proof. Let ¢1, @2 be the translations ¢(z) = z+ 81 and ¢9(z) = z+ 55 with 1, s € C\ {0}.

Let v be the linear fractional transformation

_bB

W(z) =52

Then

b (z) = v <§—z) _y (g—z ; 51) _ ﬁ— (g—z ; 51) 4 o= ba(2)

Thus @110~ = ¢, so ¢ and ¢, are conjugate. O



Lemma 0.4 (for Exercise I11.6.3). Let f be a fractional linear transformation with a unique
fized point at oo. Then f is a translation.

Proof. Let f(z) = %is. Since f has a fixed point at co,c = 0. Since f has no finite fixed

points, d = a. Thus f(z)z%z—i-%:z—{—g. ]

Proposition 0.5 (Exercise 111.6.3). A linear-fractional transformation with only one fized
point is conjugate to a translation.

Proof. Let ¢ be a fractional linear transformation with a single fixed point w. Let ¥ be a
fractional linear transformation such that ¢)(w) = oo (for example, z + =-). Let y be a
fixed point of 1¢1p~t. Then

VoY) =y = o' (y) =v ' (y)

so 1 1(y) is a fixed point of ¢. Since ¢ has a unique fixed point, 1! (y) = w, so y = ¥(w) =
oo. That is, ©¥¢p~! has a unique fixed point at co. Thus by the above lemma, ¢! is a
translation. Thus ¢ is conjugate to a translation. O

Proposition 0.6 (Exercise I11.8.2). Let 21, 2o, 23, 24 € C be distinct. They lie on a clircle if
and only if the cross ratio (21, z9; 23, 24) 1S real.

Proof. Let C be the unique clircle containing zi, 29, 23, and let ¢ be the unique fractional
linear trasformation such that

P(z1) =00 P(22) =0  P(z)=1

The unique clircle containing 0, 1, oo is the line RU{oo}, so ¢(C) = RU{oo} by preservation
of clircles. Suppose that z, € C. Since ¢(z1) = oo and ¢ is injective, this implies ¢(z4) € R.
Now suppose that (21, 22;, 23, 214) = ¢(24) is real. Then ¢~ 1¢(z4) = 24 € C. ]

Lemma 0.7 (for Exercise 111.9.2). Let ¢ : C — C be a homeomorphism, and let v : I — C
be a curve that separates C into two disjoint open, path-connected sets A, B; that is, C =
AU BU~(I), and ¢ o also splits C into two disjoint, open, path-connected sets C, D, that
is, C=CUDU¢o~v(I). Then ¢(A) =C or ¢(A) = D.

Proof. Suppose ¢(A)NC # () and ¢(A)ND # (), so there exist ay,as € A with ¢(a;) € C and
¢(az) € D. Since A is path-connected, there is a path n connecting a; and ay. Then no ¢ is
path connecting ¢(a;) and ¢(az). However, a; and as lie in distinct path components C, D
so this is a contradiction. Thus ¢(A) C C or ¢(A) C D. Relabelling if necessary, assume
¢(A) C C. By a similar argument applied to ¢!, ¢~1(C') C A or ¢~(C') C B. Since ¢ is a
bijection, we must have ¢~'(C') C A. Thus ¢(A) = C. (Note that we may have relabelled,
so it ¢(A) = D is also possible.)

[

Lemma 0.8 (for Exercise 111.9.2). The linear-fractional transformation that maps oo to 1
and has i, —1 as fized points is given by

z—1

z+1

Z

2



Proof. We do a simple calculation to check:

s =1

i—1 i—1(1—di\ i——14+4 2
i+1_i+1<1—z’)_ 1—2 2
—i—1 —i—1fi+1\ —?—i—i—1 -2
—i—i—l_—i—l—l(i+1)_—z’2—i+i+1_ 2
1

- =1
0T

—i = —1

]

Proposition 0.9 (Exercise 111.9.2). Let ¢ be the linear-fractional transformation that maps
oo to 1 and has i,—i as fived points. The image of the disk |z| < 1 under ¢ is the right
half-plane Re z > 0, and the image of the half-plane Re z < 0 under ¢ is the outside of the
unit circle, |z| > 1.

Proof. By the previous lemma,

z—1
Here is a table of some values:
z -4 -3 -2 -1 0 1 2 3 4
p(z) 2 2 3 oo -1 0 35 5 2

Since ¢ takes 0,7, —i all to points on the unit circle, ¢ maps the whole imaginary axis to
the unit circle. Since ¢ is a homeomorphism, by Lemma 0.7, the unit disk |z| < 1 must
get mapped to one of the half planes Rez < 0 or Rez > 0. Since ¢(—2) = 3, ¢ maps
the complement of the disk to the right half-plane, so the inside gets mapped to the left
half-plane Re z < 0.

The images of —1, 0,7 are —, —1, 7 respectively, so ¢ maps the imaginary axis to the unit
circle. Since ¢(—2) = 3, the left half-plane Re z < 0 gets mapped to the outside of the unit
circle, |z| > 1. O

Lemma 0.10 (for Exercise 111.9.3). Let ¢ be a linear fractional transformation. Then there
18 a matriz inducing ¢ with determinant one.

Proof. Let M be a matrix inducing ¢. M is nonsingular, so det M # 0. Then the matrix

detl 57 M also induces ¢, and has determinant 1. O]

The following is a purely topological, somewhat technical lemma. 1 just want to it so that I
can say that a fractional linear transformation that restricts to a bijection on some subset
of C must also restrict to a bijection on the boundary of that subset.

Lemma 0.11. Let X be a topological space, and A C X. Let ¢ : X — X be a homeomor-
phism so that ¢(A) = A and ¢|a : A — A is a homeomorphism. Then ¢(0A) = A and
®loa : OA — OA is a homeomorphism.



Proof. Let x € 0A. Then z is in the closure of A, so every open neighborhood U of x has
non-empty intersection with A. Let V' be an open neighborhood of ¢(x). Then ¢~'(V) is
an open neighborhood of z, so it has non-empty intersection with A. Since ¢(A) = A, this
implies that V' has non-empty intersection with A. Hence ¢(z) is in the closure of A.

Now we show that ¢(z) is not in the interior of A. Suppose ¢(x) is in the interior of
A. Then there is an open neighborhood V' containing z that lies inside A. Then ¢—1(V) is
an open neighborhood of = that lies inside A. This is a contradiction, since z is not in the
interior of A. Hence ¢(z) € 0A. Thus ¢p(0A) C 0A.

Now we want to show that 0A C ¢(0A). Let z € OA. Since ¢ is a homeomorphism from
X to itself, there exists y € X so that ¢(y) = x. Let V be an open neighborhood of y. Then
(V) is an open neighborhood of x, so ¢(V') has non-empty intersection with A. Then since
¢ is a homeomorphism and a bijection A — A, V has non-empty intersection with A. Thus
y is in the closure of A.

Now we want to show that y is not in the interior of A. Suppose y is in the interior
of A. Then there is an open set U containing y such that U C A. Then ¢(U) is an open
neighborhood of x contained in A, which contradicts that x is not in the interior of A. Hence
y is not in the interior of A. Thus y € 9A, so 0A C ¢(DA).

Hence ¢|ga : 0A — A is well-defined. It is a bijection because ¢ is a bijection, and it is
continuous and has continuous inverse since ¢ and ¢! are continuous. O

Lemma 0.12 (for Exercise I111.9.3). Let ¢ be a fractional linear transformation that maps
the upper half plane Im z > 0 onto itself. Then ¢ maps RU {oo} onto itself.

Proof. Use the previous lemma with X = C and A = {z : Imz > 0}. O

Proposition 0.13 (Exercise I111.9.3). A linear-fractional transformation maps the half-plane
Im z > 0 onto itself if and only if it is induced by a matriz with real entries whose determinant
15 1.

Proof. First consider a linear-fractional transformation induced by a matrix with real entries
with determinant 1,
az+b
Z) =
9(2) cz+d
where a,b,c,d € R and ad — bc = 1. First, we can see that ¢ maps the extended real line
onto itself. We compute

¢(i) =

ai+b (d—ic\ (bd+ ac)+i(ad — bc)
ci+d\d—ic) c + d?

Since ad — bc = 1 and ¢® + d? > 0, this has positive imaginary part, so ¢ maps the upper
half plane Im z > 0 onto itself.

Now suppose that ¢ is a linear-fractional transformation that maps the upper half-plane
Im z > 0 onto itself. By the above lemma, ¢ maps R U {cco} onto itself. Let z1, 2, 23 € R so
that ¢(z;) # co. Then let w and 1 be the unique linear transformations such that

w(z1) =00 w(z9)

0 w(z3)
n(@(z1)) =00 n(¢(z2)) =0

1
n(¢(z3)) =1



By uniqueness of threefold transitivity, w = no¢. Using the fact that 21, 2o, 23 are finite and
their images under ¢ are also finite, Theorem III.5 of Sarason gives

o o) = B = H(@)(0() — 0lz))
(6(2) — ¢(21))(B(22) — ¢(23))

(z — 22)(21 — 23)
(2 — 21)(22 — 23)

Setting these equal an solving for ¢(z) gives

¢(2) =

w(z) =

az+b
cz+d

where

a = (21)0(22)(22 — 21) + @(21)d(23) (21 — 23) + P(22)P(23) (23 — 22)
b= ¢(22)P(23)21(22 — 23) + P(21)P(22)23(21 — 22) + H(21)P(23)22(23 — 21)
c=¢(z)

)

Il
BSS

z1)(22 — 23) + @(22) (23 — 21) + &(23) (21 — 22)

(Zl 21(23 - ZQ) + gb(Zz)Zg(Zl - 23) + ¢(23)23(ZQ — Zl)

Since each z; and ¢(z;) are real, a,b,c,d are real, so ¢ is induced by a matrix with real
entries. Any matrix inducing ¢ must be nonsingular, so we can form an equivalent matrix to

induce ¢ by dividing each entry by the determinant (ad — be) to get a matrix of real entries
and determinant one that induces ¢. O

Proposition 0.14 (Exercise 111.9.4). A linear-fractional transformation of the following
form maps the disk |z| < 1 onto itself:

Az — 20)

") =t

where |zp] <1 and |A| = 1.
Proof. First suppose that ¢ has the above form. Let |z| = 1. Then

Mz — 20) _ _\Z—Zo|:|z_20| E
[0(2)] = | =——"| = Al Zoz — 1| |Zoz — 1] (IE|>

Zoz — 1 zoz—l
ez =72 1 —Z2| |Zze—1] |z —-1] 1
202z =2 |20—-2z 2=zl [z—zl  [6(2)]

Since |¢(z)] is a positive real equal to its own reciprocal, it is one. Hence ¢(z) lies on the
unit circle, so ¢ maps the unit circle to itself. Then notice that ¢(0) = Azo, which lies inside
the unit circle. Then by Lemma 0.7, ¢ maps the disk |z| < 1 onto itself. [

Proposition 0.15 (Exercise IV.3.1). Let f be holomorphic in C and satisfies f' = f. Then
f is a constant multiple of e*.

Proof. Define g(z) = e ?f(z). Then g is holomorphic, and by the product rule,

g (z) = f(z)%e_z - e_Z%f(z) =—f(zle " +e7f(2) =

Then by Exercise 11.8.1, g is constant in C, say g(z) = zo. Then

e f(z) =20 = f(2) = 2€"



(Exercise 1V.5.2)

Define f(z) = exp(z?). We want to describe the curves in C = R? defined by |f| = ¢ and
arg f = c for a real constant c¢. Let z = x + iy where z,y € R. Then 2% = 2% — y? + 2zy1,
and

exp(2?) = "V’ (cos(2zy) + isin(2xy))
|exp(2?)] = e ¥

arg exp(z?) = 2zy

The curves |exp(z?)| = ¢ are curves of the form 22 — y* = ¢. For ¢ = 0, this is the union of
the two lines x = y and © = —y. For ¢ # 0 this is a hyperbola, centered at (0,0), with a
transverse axis being the x or y axis (depending on the sign of ¢) that is symmetric about
both the z and y axes.

The curves argexp(z?) = ¢ are curves of the form 2zy = c¢. For ¢ = 0, this is the union
of the two lines z = 0 and y = 0. For ¢ # 0, this is a hyperbola, centered at (0,0), with
transverse axis being either the line © = y or z = —y (depending on the sign of ¢).

(Exercise 1V.5.3)
Define f(z) = exp (2£}). We want to describe the curves in C = R? defined by |f| = ¢ and

z—1

arg f = c for a real constant c¢. Let 2 = x + iy where z,y € R. Then

z+1  x+l4diy w+14ay (x—l—iy)_$2+y2—1—2yi

z—1 z—-1+4+iy o—1+iy\e—1—iy (x —1)2+y?
P4yt -1 . —2y
CES S Fa
- 2 +y? -1
==y
—2

The solutions to |f| = ¢ are points (z,y) satisfying
2?2+ —1
(z =1)% + 42

For ¢ = 0, we have

= Cc —> x2+y2—1:C<l‘—1)2+0y27 (x7y)7£(170>

??—l=2’-22+1 = 0=—204+1 = z=1
so the solution curve is the line x = 1 with the point (1,0) omitted. For ¢ # 1,
224+ y? —1=ca® = 2cx + 1+ cy?

= (1—c)2* +2cx + (1 —c)y* =2
2

c—1

1-c

— (1—c¢) <x+L)2+(1—c)y2:2+




via completing the square. This is the equation of a circle with center ( < 0) and radius

17
(c(;i)f);rl. So the solution curve |f| = ¢ is (usually) a circle, with the point (1,0) omitted if

necessary.
Now consider curves arg f = ¢. These have the form

m:c = 2y=c(r—1)>+cy®, (z,9)#(1,0)

For ¢ = 0, this is the line y = 0, with the point (1,0) omitted. For ¢ # 0,

1\* 1
2y =clr—1?>+cfF = (m—1)2+(y+z> =2

This is a circle with center (1, ’71) and radius % So arg f = c is either the line y = 0 or a
circle of this form, with the point (1,0) omitted if necessary.



