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Proposition 0.1 (Exercise III.5.2). Let z1, z2, z3, z4 ∈ C. If φ is a linear-fractional trans-
formation, then

(z1, z2; z3, z4) = (φ(z1), φ(z2);φ(z3), φ(z4))

Proof. There exists a unique fractional linear transformation ψ such that

ψ(z1) =∞ ψ(z2) = 0 ψ(z3) = 1

and then by definition (z1, z2; z3, z4) = ψ(z4). Similarly, there exists a unqiue fractional linear
transformation η such that

η ◦ φ(z1) =∞ η ◦ φ(z2) = 0 η ◦ φ(z3) = 1

and by definition (φ(z1), φ(z2);φ(z3), φ(z4)) = η ◦φ(z4). The composition η ◦φ is a fractional
linear transformation that agrees with ψ on three points, so by uniqueness, ψ = η ◦ φ. Thus
ψ(z4) = η ◦ φ(z4), so the cross ratios are equal.

Definition 0.2. Two linear-fractional transformations φ1, φ2 are conjugate if there is a
linear-fractional transformation ψ such that φ2 = ψφ1ψ

−1.

Proposition 0.3 (Exercise III.6.2). All translations, except the identity transformation, are
mutually conjugate.

Proof. Let φ1, φ2 be the translations φ1(z) = z+β1 and φ2(z) = z+β2 with β1, β2 ∈ C\{0}.
Let ψ be the linear fractional transformation

ψ(z) =
β2
β1
z

Then

ψφ1ψ
−1(z) = ψφ1

(
β1
β2
z

)
= ψ

(
β1
β2
z + β1

)
=
β2
β1

(
β1
β2
z + β1

)
= z + β2 = φ2(z)

Thus ψφ1ψ
−1 = φ2, so φ1 and φ2 are conjugate.
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Lemma 0.4 (for Exercise III.6.3). Let f be a fractional linear transformation with a unique
fixed point at ∞. Then f is a translation.

Proof. Let f(z) = az+b
cz+d

. Since f has a fixed point at ∞, c = 0. Since f has no finite fixed

points, d = a. Thus f(z) = a
d
z + b

d
= z + b

d
.

Proposition 0.5 (Exercise III.6.3). A linear-fractional transformation with only one fixed
point is conjugate to a translation.

Proof. Let φ be a fractional linear transformation with a single fixed point w. Let ψ be a
fractional linear transformation such that ψ(w) = ∞ (for example, z 7→ z

z−w ). Let y be a
fixed point of ψφψ−1. Then

ψφψ−1(y) = y =⇒ φ(ψ−1(y)) = ψ−1(y)

so ψ−1(y) is a fixed point of φ. Since φ has a unique fixed point, ψ−1(y) = w, so y = ψ(w) =
∞. That is, ψφψ−1 has a unique fixed point at ∞. Thus by the above lemma, ψφψ−1 is a
translation. Thus φ is conjugate to a translation.

Proposition 0.6 (Exercise III.8.2). Let z1, z2, z3, z4 ∈ C be distinct. They lie on a clircle if
and only if the cross ratio (z1, z2; z3, z4) is real.

Proof. Let C be the unique clircle containing z1, z2, z3, and let φ be the unique fractional
linear trasformation such that

φ(z1) =∞ φ(z2) = 0 φ(z3) = 1

The unique clircle containing 0, 1,∞ is the line R∪{∞}, so φ(C) = R∪{∞} by preservation
of clircles. Suppose that z4 ∈ C. Since φ(z1) =∞ and φ is injective, this implies φ(z4) ∈ R.
Now suppose that (z1, z2; , z3, z4) = φ(z4) is real. Then φ−1φ(z4) = z4 ∈ C.

Lemma 0.7 (for Exercise III.9.2). Let φ : C → C be a homeomorphism, and let γ : I → C
be a curve that separates C into two disjoint open, path-connected sets A,B; that is, C =
A ∪B ∪ γ(I), and φ ◦ γ also splits C into two disjoint, open, path-connected sets C,D, that
is, C = C ∪D ∪ φ ◦ γ(I). Then φ(A) = C or φ(A) = D.

Proof. Suppose φ(A)∩C 6= ∅ and φ(A)∩D 6= ∅, so there exist a1, a2 ∈ A with φ(a1) ∈ C and
φ(a2) ∈ D. Since A is path-connected, there is a path η connecting a1 and a2. Then η ◦ φ is
path connecting φ(a1) and φ(a2). However, a1 and a2 lie in distinct path components C,D
so this is a contradiction. Thus φ(A) ⊂ C or φ(A) ⊂ D. Relabelling if necessary, assume
φ(A) ⊂ C. By a similar argument applied to φ−1, φ−1(C) ⊂ A or φ−1(C) ⊂ B. Since φ is a
bijection, we must have φ−1(C) ⊂ A. Thus φ(A) = C. (Note that we may have relabelled,
so it φ(A) = D is also possible.)

Lemma 0.8 (for Exercise III.9.2). The linear-fractional transformation that maps ∞ to 1
and has i,−i as fixed points is given by

z 7→ z − 1

z + 1
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Proof. We do a simple calculation to check:

i 7→ i− 1

i+ 1
=
i− 1

i+ 1

(
1− i
1− i

)
=
i− i2 − 1 + i

1− i2
=

2i

2
= i

−i 7→ −i− 1

−i+ 1
=
−i− 1

−i+ 1

(
i+ 1

i+ 1

)
=
−i2 − i− i− 1

−i2 − i+ i+ 1
=
−2i

2
= −i

∞ 7→ 1

1
= 1

Proposition 0.9 (Exercise III.9.2). Let φ be the linear-fractional transformation that maps
∞ to 1 and has i,−i as fixed points. The image of the disk |z| < 1 under φ is the right
half-plane Re z > 0, and the image of the half-plane Re z < 0 under φ is the outside of the
unit circle, |z| > 1.

Proof. By the previous lemma,

φ(z) =
z − 1

z + 1

Here is a table of some values:

z −4 −3 −2 −1 0 1 2 3 4
φ(z) 5

3
2 3 ∞ −1 0 1

3
1
2

3
5

Since φ takes 0, i,−i all to points on the unit circle, φ maps the whole imaginary axis to
the unit circle. Since φ is a homeomorphism, by Lemma 0.7, the unit disk |z| < 1 must
get mapped to one of the half planes Re z < 0 or Re z > 0. Since φ(−2) = 3, φ maps
the complement of the disk to the right half-plane, so the inside gets mapped to the left
half-plane Re z < 0.

The images of −i, 0, i are −i,−1, i respectively, so φ maps the imaginary axis to the unit
circle. Since φ(−2) = 3, the left half-plane Re z < 0 gets mapped to the outside of the unit
circle, |z| > 1.

Lemma 0.10 (for Exercise III.9.3). Let φ be a linear fractional transformation. Then there
is a matrix inducing φ with determinant one.

Proof. Let M be a matrix inducing φ. M is nonsingular, so detM 6= 0. Then the matrix
1

detM
M also induces φ, and has determinant 1.

The following is a purely topological, somewhat technical lemma. I just want to it so that I
can say that a fractional linear transformation that restricts to a bijection on some subset
of C must also restrict to a bijection on the boundary of that subset.

Lemma 0.11. Let X be a topological space, and A ⊂ X. Let φ : X → X be a homeomor-
phism so that φ(A) = A and φ|A : A → A is a homeomorphism. Then φ(∂A) = ∂A and
φ|∂A : ∂A→ ∂A is a homeomorphism.
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Proof. Let x ∈ ∂A. Then x is in the closure of A, so every open neighborhood U of x has
non-empty intersection with A. Let V be an open neighborhood of φ(x). Then φ−1(V ) is
an open neighborhood of x, so it has non-empty intersection with A. Since φ(A) = A, this
implies that V has non-empty intersection with A. Hence φ(x) is in the closure of A.

Now we show that φ(x) is not in the interior of A. Suppose φ(x) is in the interior of
A. Then there is an open neighborhood V containing x that lies inside A. Then φ−1(V ) is
an open neighborhood of x that lies inside A. This is a contradiction, since x is not in the
interior of A. Hence φ(x) ∈ ∂A. Thus φ(∂A) ⊂ ∂A.

Now we want to show that ∂A ⊂ φ(∂A). Let x ∈ ∂A. Since φ is a homeomorphism from
X to itself, there exists y ∈ X so that φ(y) = x. Let V be an open neighborhood of y. Then
φ(V ) is an open neighborhood of x, so φ(V ) has non-empty intersection with A. Then since
φ is a homeomorphism and a bijection A→ A, V has non-empty intersection with A. Thus
y is in the closure of A.

Now we want to show that y is not in the interior of A. Suppose y is in the interior
of A. Then there is an open set U containing y such that U ⊂ A. Then φ(U) is an open
neighborhood of x contained in A, which contradicts that x is not in the interior of A. Hence
y is not in the interior of A. Thus y ∈ ∂A, so ∂A ⊂ φ(∂A).

Hence φ|∂A : ∂A→ ∂A is well-defined. It is a bijection because φ is a bijection, and it is
continuous and has continuous inverse since φ and φ−1 are continuous.

Lemma 0.12 (for Exercise III.9.3). Let φ be a fractional linear transformation that maps
the upper half plane Im z > 0 onto itself. Then φ maps R ∪ {∞} onto itself.

Proof. Use the previous lemma with X = C and A = {z : Im z > 0}.

Proposition 0.13 (Exercise III.9.3). A linear-fractional transformation maps the half-plane
Im z > 0 onto itself if and only if it is induced by a matrix with real entries whose determinant
is 1.

Proof. First consider a linear-fractional transformation induced by a matrix with real entries
with determinant 1,

φ(z) =
az + b

cz + d

where a, b, c, d ∈ R and ad − bc = 1. First, we can see that φ maps the extended real line
onto itself. We compute

φ(i) =
ai+ b

ci+ d

(
d− ic
d− ic

)
=

(bd+ ac) + i(ad− bc)
c2 + d2

Since ad − bc = 1 and c2 + d2 > 0, this has positive imaginary part, so φ maps the upper
half plane Im z > 0 onto itself.

Now suppose that φ is a linear-fractional transformation that maps the upper half-plane
Im z > 0 onto itself. By the above lemma, φ maps R ∪ {∞} onto itself. Let z1, z2, z3 ∈ R so
that φ(zi) 6=∞. Then let ω and η be the unique linear transformations such that

ω(z1) =∞ ω(z2) = 0 ω(z3) = 1

η(φ(z1)) =∞ η(φ(z2)) = 0 η(φ(z3)) = 1
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By uniqueness of threefold transitivity, ω = η ◦φ. Using the fact that z1, z2, z3 are finite and
their images under φ are also finite, Theorem III.5 of Sarason gives

ω(z) =
(z − z2)(z1 − z3)
(z − z1)(z2 − z3)

η ◦ φ(z) =
(φ(z)− φ(z2))(φ(z1)− φ(z3))

(φ(z)− φ(z1))(φ(z2)− φ(z3))

Setting these equal an solving for φ(z) gives

φ(z) =
az + b

cz + d

where

a = φ(z1)φ(z2)(z2 − z1) + φ(z1)φ(z3)(z1 − z3) + φ(z2)φ(z3)(z3 − z2)
b = φ(z2)φ(z3)z1(z2 − z3) + φ(z1)φ(z2)z3(z1 − z2) + φ(z1)φ(z3)z2(z3 − z1)
c = φ(z1)(z2 − z3) + φ(z2)(z3 − z1) + φ(z3)(z1 − z2)
d = φ(z1)z1(z3 − z2) + φ(z2)z2(z1 − z3) + φ(z3)z3(z2 − z1)

Since each zi and φ(zi) are real, a, b, c, d are real, so φ is induced by a matrix with real
entries. Any matrix inducing φ must be nonsingular, so we can form an equivalent matrix to
induce φ by dividing each entry by the determinant (ad− bc) to get a matrix of real entries
and determinant one that induces φ.

Proposition 0.14 (Exercise III.9.4). A linear-fractional transformation of the following
form maps the disk |z| < 1 onto itself:

φ(z) =
λ(z − z0)
z0z − 1

where |z0| < 1 and |λ| = 1.

Proof. First suppose that φ has the above form. Let |z| = 1. Then

|φ(z)| =
∣∣∣∣λ(z − z0)
z0z − 1

∣∣∣∣ = |λ|
∣∣∣∣ z − z0z0z − 1

∣∣∣∣ =
|z − z0|
|z0z − 1|

=
|z − z0|
|z0z − 1|

(
|z|
|z|

)
=
|zz − zz0|
|z0zz − z|

=
|1− zz0|
|z0 − z|

=
|zz0 − 1|
|z − z0|

=
|zz0 − 1|
|z − z0|

=
1

|φ(z)|
Since |φ(z)| is a positive real equal to its own reciprocal, it is one. Hence φ(z) lies on the
unit circle, so φ maps the unit circle to itself. Then notice that φ(0) = λz0, which lies inside
the unit circle. Then by Lemma 0.7, φ maps the disk |z| < 1 onto itself.

Proposition 0.15 (Exercise IV.3.1). Let f be holomorphic in C and satisfies f ′ = f . Then
f is a constant multiple of ez.

Proof. Define g(z) = e−zf(z). Then g is holomorphic, and by the product rule,

g′(z) = f(z)
∂

∂z
e−z + e−z

∂

∂z
f(z) = −f(z)e−z + e−zf(z) = 0

Then by Exercise II.8.1, g is constant in C, say g(z) = z0. Then

e−zf(z) = z0 =⇒ f(z) = z0e
z
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(Exercise IV.5.2)
Define f(z) = exp(z2). We want to describe the curves in C ∼= R2 defined by |f | = c and
arg f = c for a real constant c. Let z = x + iy where x, y ∈ R. Then z2 = x2 − y2 + 2xyi,
and

exp(z2) = ex
2−y2( cos(2xy) + i sin(2xy)

)
| exp(z2)| = ex

2−y2

arg exp(z2) = 2xy

The curves | exp(z2)| = c are curves of the form x2 − y2 = c. For c = 0, this is the union of
the two lines x = y and x = −y. For c 6= 0 this is a hyperbola, centered at (0, 0), with a
transverse axis being the x or y axis (depending on the sign of c) that is symmetric about
both the x and y axes.

The curves arg exp(z2) = c are curves of the form 2xy = c. For c = 0, this is the union
of the two lines x = 0 and y = 0. For c 6= 0, this is a hyperbola, centered at (0, 0), with
transverse axis being either the line x = y or x = −y (depending on the sign of c).

(Exercise IV.5.3)
Define f(z) = exp

(
z+1
z−1

)
. We want to describe the curves in C ∼= R2 defined by |f | = c and

arg f = c for a real constant c. Let z = x+ iy where x, y ∈ R. Then

z + 1

z − 1
=
x+ 1 + iy

x− 1 + iy
=
x+ 1 + iy

x− 1 + iy

(
x− 1− iy
x− 1− iy

)
=
x2 + y2 − 1− 2yi

(x− 1)2 + y2

=
x2 + y2 − 1

(x− 1)2 + y2
+ i

−2y

(x− 1)2 + y2

|f | = x2 + y2 − 1

(x− 1)2 + y2

arg f =
−2y

(x− 1)2 + y2

The solutions to |f | = c are points (x, y) satisfying

x2 + y2 − 1

(x− 1)2 + y2
= c =⇒ x2 + y2 − 1 = c(x− 1)2 + cy2, (x, y) 6= (1, 0)

For c = 0, we have

x2 − 1 = x2 − 2x+ 1 =⇒ 0 = −2x+ 1 =⇒ x = 1

so the solution curve is the line x = 1 with the point (1, 0) omitted. For c 6= 1,

x2 + y2 − 1 = cx2 − 2cx+ 1 + cy2

=⇒ (1− c)x2 + 2cx+ (1− c)y2 = 2

=⇒ (1− c)
(
x+

c

1− c

)2

+ (1− c)y2 = 2 +
c2

c− 1

=⇒
(
x− c

c− 1

)2

+ y2 =
(c− 1)2 + 1

(c− 1)2
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via completing the square. This is the equation of a circle with center
(

c
c−1 , 0

)
and radius√

(c−1)2+1
(c−1)2 . So the solution curve |f | = c is (usually) a circle, with the point (1, 0) omitted if

necessary.
Now consider curves arg f = c. These have the form

−2y

(x− 1)2 + y2
= c =⇒ −2y = c(x− 1)2 + cy2, (x, y) 6= (1, 0)

For c = 0, this is the line y = 0, with the point (1, 0) omitted. For c 6= 0,

−2y = c(x− 1)2 + cy2 =⇒ (x− 1)2 +

(
y +

1

c

)2

=
1

c2

This is a circle with center
(
1, −1

c

)
and radius 1

c
. So arg f = c is either the line y = 0 or a

circle of this form, with the point (1, 0) omitted if necessary.
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